1432 Short Reports

 $(C_{25}H_{32}O_{12})$, 492 (M – MeOH, 1), 480 (M – CO₂, 17), 464 (M – HOAc, 2), 438 (480 – MeOH, 9), 348 (M – RCO₂H, 1), 288 (348 – HOAc, 19), 57 (100).

$$\left[\alpha\right]_{24}^{\lambda} = \frac{589}{+15.5} \frac{578}{+16.5} \frac{546}{+18.5} \frac{436}{+41.5} \frac{365 \text{ nm}}{+94.0}$$

 $(c = 0.2, CHCl_3).$

REFERENCES

- Fischer, N. H., Olivier, E. J. and Fischer, H. D. (1979) Progress in the Chemistry of Organic Natural Products, Vol. 38, pp. 48-390
- Fischer, N. H., Wiley, R. A., Perry, D. L. and Haegele, K. D. (1976) J. Org. Chem. 41, 3956.
- Seaman, T. C. and Fischer, N. H. (1979) Phytochemistry 18, 1065

Phytochemistry, Vol. 20, No. 6, pp. 1432-1433, 1981. Printed in Great Britain.

0031-9422/81/061432-02 \$02.00/0 © 1981 Pergamon Press Ltd.

SIX CADINENE DERIVATIVES FROM AGERATINA ADENOPHORA*

FERDINAND BOHLMANN and RAJINDER K. GUPTA

Institute for Organic Chemistry, Technical University Berlin, D-1000 Berlin 12, West Germany

(Received 12 September 1980)

Key Word Index—Ageratina adenophora; Compositae; Eupatorieae, sesquiterpenes; cadinene derivatives.

The aerial parts of A. adenophora (Spreng.) K. et R. afforded β -farnesene, germacrene D, bisabolene, caryophyllene and six further sesquiterpenes, the cadinene derivatives 1–6, of which only 1 had been isolated previously [1]. The structures of 2–6 followed from the ¹H NMR data (Table 1) and spin decoupling. The ¹H NMR signals of 2 could only be interpreted completely in C_6D_6 . Spin decoupling clearly indicated the

presence of a cadinene derivative. Irradiation of the signal at δ 1.53 collapsed the double doublets at δ 2.63 and 2.11 to doublets and changed the signals at δ 3.55 and 1.83 as well. The signal at δ 3.55 was further coupled with the signal of the olefinic proton at δ 5.83 and with that of the olefinic methyl (δ 1.74 dd) thus indicating the sequence H-1, H-6, H-5 and H-4 and the presence of a six-membered ring. The signal at δ 1.83 was further coupled with that of

4
$$X = O$$

5 $X = \beta$ -OH, H

^{*}Part 333 in the series "Naturally Occurring Terpene Derivatives". For Part 332 see Bohlmann, F., Zdero, C., Pickardt, J., Robinson, H. and King, R. M. (1981) *Phytochemistry* **20**, 1323.

Short Reports 1433

					
	2	3	4	5	
	Table 1. HNMR	data of compo	ounds 2-6 (2/0 MHz, 1)	MS as internal standard)	

	2		3	4		5		6	
	CDCl ₃	C_6D_6	CDCl ₃	CDCl ₃	C_6D_6	CDCl ₃	C_6D_6	CDCl ₃	
H-1	2.82	2.63 dd	2.80 dd	2.74	2.60 dd	2.79	2.78 dd	2.78 dd	
H-1'	2.62	2.11 dd	2.56 dd	2.60	2.07 dd	2.46	2.15 dd	2.52 dd	
H-4	6.22	5.83 ddq	6.33 ddq	6.41	6.22 ddq	6.63	6.70 ddq	$6.35 \ s \ (br)$	
H-5	4.06	3.55 ddq	3.99 ddq	3.39	2.83 dddq	2.96	2.59 dddq	3.39 dddq	
H-6	2.20 m	1.53 ddddd	$2.20 \ m$	2.20	1.38 <i>ddddd</i>	1.66 m	1.19 <i>ddddd</i>	2.56 m	
H-7	2.11 m	1.83 dddq	2.0 m	2.02	2.32 dddq	2.11	2.01 dddq	$2.05 \ dddq$	
H-8	2.42 m	2.31 dd		2.27	2.05 dd	1.84 m	1.42 ddd	2.28 dd	
H-8'	$2.20 \ m$	1.67 dd		2.15	1.52 dd	1.20 m	1.32 d	2.87 dd	
H-9				_	_	4.16	3.79 ddd		
H-10		_		2.35	1.78 dd	1.85	1.35 m	_	
H-11	_			2.30	1.78 m	2.0	1.77 m		
H-12	2.03	2.07 s	\[\begin{cases} 4.78 \ bd \ (br) \] \[\begin{cases} 4.15 \ d \ (br) \] \[\end{cases}	0.96	0.71 d	1.00	0.96 d	$\begin{cases} 5.62 \ s \ (br) \\ 5.52 \ s \ (br) \end{cases}$	
H-13	1.90	1.48 s	$1.76 \ s \ (br)$	0.92	0.58 d	0.92	0.76 d	$1.87 \ s \ (br)$	
H-14	0.99	0.62 d	0.97 d	1.03	1.04 d	1.06	0.85 d	1.07 d	
H-15	1.75	1.74 dd	1.77 dd	1.72	1.72 dd	1.77	1.93 dd	1.75 dd	

 $J(Hz): 1, 1' = 16; 1, 6 = 2.5; 1', 6 = 4.5; 4, 5 = 4, 6 = 2; 4, 15 = 1.5; 5, 6 \sim 5; 5, 15 = 2; 6, 7 = 10; 7, 8 = 4; 7, 8' = 12; 7, 14 = 6; 8, 7, 8' = 12; 7, 14 = 12; 7, 14 = 12; 7, 14 = 12; 7, 14 = 12; 7, 14 = 12; 7, 14 = 12$ = 11, 13 = 6.5).

the secondary methyl ($\delta 0.62 d$) and two double doublets at δ 2.31 and 1.61 for protons which were obviously both α to a second keto group, which also was conjugated causing a deshielding effect of one of the additional olefinic methyls ($\delta 2.07 s$ and 1.48 s). The stereochemistry at C-5 through C-7 followed from the observed couplings. The spectroscopic data of 3 and 6 showed that both had an additional hydroxyl group which was positioned in 3 at C-12, as was easily deduced from the absence of an olefinic methyl signal. The latter was replaced by two broadened doublets at δ 4.78 and 4.15, typical for an allylic CH₂OH group. In the spectrum of 6 one of the olefinic methyl signals was replaced by the signals of allylic protons. Inspection of all other signals showed that the hydroxyl could only be placed at C-10. The chemical shift of H-5 supported a β -orientation of the 10-hydroxyl group. The ¹H NMR data of 4 showed that the 10,11-double bond in 2 was hydrogenated. All the signals were assigned by spin decoupling and the stereochemistry was deduced from the observed couplings. Compound 5 was obviously derived from 4 by reduction of the 9-keto group. Inspection of a model showed that only a 9β -hydroxyl group would agree with the observed couplings. We have named compound 4, without an oxygen function at C-9, ageraphorone.

Cadinene derivatives have so far been isolated mainly from Chromolaena species [2,3], a genus not closely related to Ageratina.

EXPERIMENTAL

The air-dried aerial parts (320 g) of A. adenophera, collected north of Delhi, were extracted with Et₂O-petrol (1:2). The extract obtained was separated by column chromatography (Si gel) and further by repeated TLC (Si gel). The petrol fraction afforded 50 mg β -farnesene, 100 mg germacrene D, 15 mg bisabolene, 20 mg caryophyllene, 100 mg 1, 5 mg 2, 10 mg 3, 20 mg 4, 20 mg 5 and 5 mg 6. Compounds 2-6 were separated by TLC $(C_6H_6-CH_2Cl_2, 1:1; \times 4).$

9-Oxo-10,11-dehydro-ageraphorone (2). Colourless oil, IR $v_{\text{max}}^{\text{CCI}_4} \text{ cm}^{-1}$: 1685 (C=CCO); MS m/z (rel. int.): 232.146 (M⁺, 100) $(C_{15}H_{20}O_2)$, 217 (M - Me, 12), 189 $(M - C_3H_7, 18)$, 161 (189 - CO, 88).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+297} \frac{578}{+306} \frac{546}{+356} \frac{436 \text{ nm}}{+630}$$
 (c = 0.1, CHCl₃).

9-0xo-12-hydroxy-10,11-dehydro-ageraphorone (3). Colourless oil, IR $v_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 3600 (OH), 1690 (C=CCO); MS m/z (rel. int.): 248.141 (M⁺, 5) (C₁₅H₂₀O₃), 205 (248 - C₃H₇, 11), 55 (C₄H₇⁺, 100).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \text{ nm}}{+40 \quad +44 \quad +50 \quad +56}$$
 (c = 0.8, CHCl₃).

9-Oxo-ageraphorone (4). Colourless oil, IR v_{max}^{-1} ; 1720 (C=O), 1680 (C=CCO); MS m/z (rel. int.): 234.162 (M⁺, 58) $(C_{15}H_{22}O_2)$, 192 (M - C_3H_6 , 33, McLafferty), 164 (192 - CO, 37), 136 (164 – CO, 100).

$$[\alpha]_{24}^{\lambda} = \frac{589}{+50} \frac{578}{+52} \frac{546}{+59} \frac{436 \text{ nm}}{+92}$$
 (c = 0.1, CHCl₃).

9β-Hydroxy-ageraphorone (5). Colourless oil, IR $v_{max}^{CCl_4}$ cm⁻¹: 3600 (OH), 1675 (C=CCO); MS m/z (rel. int.): 236.178 (M⁺, 5) $(C_{15}H_{24}O_2)$ 218 (M $-H_2O$, 100), 203 (218 - 'Me, 16), 175 (218 $- C_3H_7, 95$).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+44} \frac{578}{+47} \frac{546}{+54} \frac{436 \text{ nm}}{+83}$$
 (c = 0.5, CHCl₃).

Acknowledgement-We thank the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Bohlmann, F., Jakupovic, J. and Lonitz, M. (1977) Chem. Ber. 110, 301.
- 2. Bohlmann, F. and Zdero, C. (1977) Chem. Ber. 110, 487.
- 3. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1978) Phytochemistry 18, 1177 and refs. cited therein.